
Savitribai Phule Pune University 

T.Y.B.Sc. (Computer Science) Sem - V 

Course Type: DSEC - III Course Code: CS - 356 

Paper Title: Theoretical Computer Science 

Teaching Scheme 

3 Lect/ week 

No. of Credits 

2 

Examination Scheme 

IE : 15 marks 

UE: 35 marks 

Prerequisites 

 Mathematical Preliminaries Sets (Subset, Set Operations), Relations (Properties of 

Relations, Closure of Relations) and Functions 

 Discrete Mathematics- Graphs, Trees, Logic and Proof Techniques 

Course Objectives 

● To understand the Finite Automata, Pushdown Automata and Turing Machine. 

● To understand the Regular Language, Context Free Language, Context Sensitive 

Language and Unrestricted Language. 

● To understand the relation between Automaton and Language 

Course Outcomes 

On completion of the course, student will be able to– 

● Understand the use of automata during language design. 

● Relate various automata and Languages. 

Course Contents 

Chapter 1 Finite Automaton 10 Lect 

Introduction: Symbol, Alphabet, String, Prefix & Suffix of Strings, Formal 

Language, Operations on Languages. 

Deterministic finite Automaton – Definition, DFA as language recognizer, 

DFA as pattern recognizer. 

Nondeterministic finite automaton – Definition and Examples. 

NFA To DFA (Myhill Nerode Method) 

NFA with ε- transitions Definition and Examples. 

NFA with ε-Transitions to DFA & Examples 

Finite automaton with output – Mealy and Moore machine, Definition and 

Examples. 

Minimization of DFA, Algorithm & Problem using Table Method. 

Chapter 2 Regular Expressions and Languages 6 Lect 

 Regular Expressions (RE): Definition & Example 

 Regular Expressions Identities. 

 Regular language-Definition and Examples. 

 Conversion of RE to FA-Examples. 

 Pumping lemma for regular languages and applications. 

 Closure Properties of regular Languages 



Chapter 3 Context-Free Grammars and Languages 10 Lect 

 Grammar - Definition and Examples. 

 Derivation-Reduction - Definition and Examples. 

 Chomsky Hierarchy. 

 CFG: Definition & Examples. LMD, RMD, Parse Tree 

 Ambiguous Grammar: Concept & Examples. 

Simplification of CFG: Removing Useless Symbols, Unit Production, ϵ-production and 

Nullable Symbol. 

 Normal Forms: Greibach Normal Form (GNF) and Chomsky Normal Form (CNF) 

 Regular Grammar: Definition. 

Left linear and Right Linear Grammar-Definition and Example. 

Equivalence of FA & Regular Grammar 

Construction of regular grammar equivalent to a given DFA. 

Construction of a FA from the given right linear grammar 

Chapter 4 Push Down Automata 5 Lect 

 Definition of PDA and examples. 

Construction of PDA using empty stack and final State method: Examples using stack 

method. 

 Definition DPDA & NPDA, their correlation and Examples of NPDA 

 CFG (in GNF) to PDA: Method and examples 

Chapter 5 Turing Machine 5 Lect 

The Turing Machine Model, Definition and Design of TM 

 Problems on language recognizers. 

 Language accepted by TM. 

Types of Turing Machines (Multitrack TM, Two-way TM, Multitape TM, Non- 

deterministic TM) 

 Introduction to LBA (Basic Model) & CSG. (Without Problems) 

Reference Books 

1. Introduction to Automata Theory, Languages and Computation, John E. Hopcraft, Rajeev 

Motwani, Jeffrey D. Ullman, Third Edition, Pearson Education Publication, 2008 

2. Introduction to Automata theory, Languages and computation By John E. Hopcroft and 

JeffreyUllman – Narosa Publishing House, 1995 

3. Theory of Computer Science Automata, Languages and Computation, K.L.P. Mishra, N. 

Chandrasekaran, Publication- Prentice Hall of India, 2008 

4. Introduction to Computer Theory Daniel I. A. Cohen – 2nd edition – John Wiley & Sons, 

1996 

5. Introduction to Languages and The Theory of Computation John C. Martin The McGraw- 

Hill, Fourth Edition, 2011 



Savitribai Phule Pune University 

T.Y.B.Sc. (Computer Science) - Sem - VI 

Course Type: DSEC - VI Course Code: CS - 366 

Course Title: Compiler Construction 

Teaching Scheme 

3 Lect / week 

No. of Credits 

2 

Examination Scheme 

IE: 15 marks 

UE: 35 marks 

Prerequisites 

 Knowledge of Automata Theory and Languages. 

Course Objectives 

● To understand design issues of a lexical analyzer and use of LEX tool. 

● To understand design issues of a parser and use of YACC tool. 

● To understand and design code generation and optimization techniques. 

Course Outcomes 

On completion of the course, student will be able to– 

● Understand the process of scanning and parsing of source code. 

● Learn the conversion code written in source language to machine language. 

● Understand tools like LEX and YACC. 

Course Contents 

Chapter 1 Introduction 4 Lect 

 Definition of Compiler, Aspects of compilation. 

 The structure of Compiler. 

Phases of Compiler – Lexical Analysis, Syntax Analysis, Semantic Analysis, 

Intermediate Code generation, code optimization, code generation. 

 Error Handling. 

 Introduction to one pass & Multipass compilers, cross compiler, Bootstrapping. 

Chapter 2 Lexical Analysis (Scanner) 4 Lect 

 Review of Finite automata as a lexical analyzer, 

Applications of Regular Expressions and Finite Automata (lexical analyzer, 

searching using RE), Input buffering, Recognition of tokens. 

 LEX: A Lexical analyzer generator (Simple Lex Program) 

Chapter 3 Syntax Analysis (Parser) 14 Lect 

 Definition, Types of Parsers 

 Top-Down Parser – 

Top-Down Parsing with Backtracking: Method & Problems 

 Drawbacks of Top-Down parsing with backtracking, 3.2.3Elimination of Left 

Recursion (direct & indirect) 3.2.4Need for Left Factoring & examples 

 Recursive Descent Parsing: Definition 

 Implementation of Recursive Descent Parser Using Recursive Procedures 

3.4 Predictive [LL (1)] Parser (Definition, Model) 

3.4.1Implementation of Predictive Parser [LL (1)] 

3.4.2 FIRST & FOLLOW 



Construction of LL (1) Parsing Table 

 Parsing of a String using LL (1) Table. 

 Bottom-Up Parsers 

 Operator Precedence Parser -Basic Concepts 

 Operator Precedence Relations form Associativity & Precedence 

 Operator Precedence Grammar 

 Algorithm for LEADING & TRAILING (with ex.) 

 Algorithm for Operator Precedence Parsing (with ex.) 

 Precedence Functions 

 Shift Reduce Parser 

 Reduction, Handle, Handle Pruning 

 Stack Implementation of Shift Reduce Parser (with examples) 

 LR Parser: Model, Types [SLR (1), Canonical LR, LALR]-Method & examples. 

 YACC (from Book 3) –program sections, simple YACC program for expression evaluation 

Chapter 4 Syntax Directed Definition 7 Lect 

Syntax Directed Definitions (SDD) 

Inherited & Synthesized Attributes 

Evaluating an SDD at the nodes of a Parse Tree, Example 

 Evaluation Orders for SDD’s 

Dependency Graph 

Ordering the Evaluation of Attributes 

S-Attributed Definition 

L-Attributed Definition 

 Application of SDT 

Construction of syntax trees, 

 The Structure of a Type 

4. 4 Translation Schemes 

4.4.1 Definition, Postfix Translation Scheme 

Chapter 5 Code Generation and Optimization 7 Lect 

 Compilation of expression – 

Concepts of operand descriptors and register descriptors with example. 

Intermediate code for expressions – postfix notations, 

 Triples, Quadruples and Expression trees. 

Code Optimization – Optimizing transformations – compile time evaluation, elimination of 

common sub expressions, dead code elimination, frequency reduction, strength reduction. 

 Three address code 

DAG for Three address code 

 The Value-number method for constructing DAG’s. 

 Definition of basic block, Basic blocks, and flow graphs 

 Directed acyclic graph (DAG) representation of basic block. 

 Issues in design of code generator. 



 

1. Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Ravi Sethi, Jeffrey D. 

Ullman, 2004 

2. Principles of Compiler Design By: Alfred V. Aho, Jeffrey D. Ullman, Narosa Publication 

House, 2002 

3. LEX & YACC, 2nd edition, O’reilly Publication, 2012 

Reference Books 


